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Abstract

Driver distraction detection is an important computer vision problem that can play
a crucial role in enhancing traffic safety and reducing traffic accidents. This paper
proposes a novel semi-supervised method for detecting driver distractions based on
Vision Transformer (ViT). Specifically, a multi-modal Vision Transformer (ViT-
DD) is developed that makes use of inductive information contained in training
signals of distraction detection as well as driver emotion recognition. Further, a
self-learning algorithm is designed to include driver data without emotion labels
into the multi-task training of ViT-DD. Extensive experiments conducted on the
SFDDD and AUCDD datasets demonstrate that the proposed ViT-DD outperforms
the best state-of-the-art approaches for driver distraction detection by 6.5% and
0.9%, respectively.

1 Introduction

According to National Highway Traffic Safety Administration (NHTSA), there were 38,824 people
killed in motor vehicle crashes on U.S. roadways during 2020. Among these cases, 3,142 (or
8.1%) are distraction-affected crashes, i.e., a crash involving at least one driver who was distracted.
Distracted driving is defined by NHTSA as any activity that diverts attention away from safe driving,
such as talking or texting on a cell phone, eating and drinking, chatting with others in the car, and
fiddling with the audio, entertainment, or navigation system [1].

During the past decade, rapid development has been witnessed worldwide in the intelligent vehicle
technology, where advancements in perception, communication, and computation introduced numer-
ous emerging applications on intelligent vehicles. As a core element of intelligent vehicles, driving
automation systems, such as Advanced Driver-Assistance Systems (ADAS) and Automated Driving
Systems (ADS), have been designed to support human drivers either by providing warnings to reduce
risk exposure, or by assisting the vehicle actuation to relieve drivers’ burden on some of the driving
tasks. When functioning, these systems can help the driver safely navigate the vehicle through tricky
traffic scenarios when him/her is distracted by some other tasks [2].

However, a driver can also over-trust the driving automation system, especially when the system
is categorized as SAE Level 3 (i.e., conditional driving automation): When the automated driving
features are engaged, the driver is allowed to take his/her hands off the steering wheel and feet off
the pedals, but he/she needs to stay alert and get ready to take over the driving task when the system
requests [3]. Due to the human nature, the attention from the driver on road conditions can get
diminished when he/she is not in charge of driving, and the involvement of distracted behaviors can
decrease driver’s capability of taking over, which in turn leads to traffic accidents.
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It can be envisioned in the future transportation systems that intelligent vehicles can detect and identify
driver distractions, then warn the driver against them or take precautionary measures. Therefore,
in this paper, a multi-modal Vision Transformer (termed ViT-DD) is proposed to exploit inductive
information contained in the training signals of both emotion recognition and distraction detection,
along with a novel pseudo-labeled multi-task training algorithm which leverages the knowledge in an
independent emotion recognition teacher model to train a student ViT-DD.

In summary, the contributions of this paper are threefold:

• To the best of the authors’ knowledge, this is the first paper to explore the detection of driver
distractions using a pure Transformer-based architecture.

• A multi-modal Vision Transformer, i.e. ViT-DD, is developed for driver distraction detection,
where a novel semi-supervised learning approach is proposed to include driver data without
emotion labels in the multi-task training of ViT-DD.

• Extensive experiments on the SFDDD [4] and AUCDD [5] datasets are conducted, and
the results demonstrate the superiority of the proposed methodologies compared to the
state-of-the-art approaches.

2 Background

2.1 Vision Transformer

Since AlexNet [6], convolutional neural networks (CNNs) [7] have been the dominant methodology
for learning visual representations of images in computer vision (CV) [8, 9]. Vision Transformer
(ViT) [10], on the other hand, has recently achieved state-of-the-art performances on a variety of CV
tasks and garnered significant interest from the CV community. For instance, Can et al. [11] propose
employing Transformer models for traffic scene understanding tasks.

ViT seldom employs convolution kernels (i.e. the core of CNNs). Instead, it relies on the self-attention
mechanism [12] to provide context information for input visual tokens, which is inspired by tasks in
natural language processing. In addition to the initial patch extraction process, ViT does not introduce
image-specific inductive biases into its architecture.

Despite the success of ViT, there has been few works to apply the Transformer architecture to the task
of driver distraction detection. In this paper, Vision Transformer is adopted as the backbone network,
and it is extended so that it can receive multi-modal input images and be used in multi-task learning
setting.

2.2 Multi-Task Learning and Self-Training

Multi-Task Learning (MTL) is an inductive transfer mechanism with the primary objective of
enhancing generalization performance[13]. Learning one task at a time is the standard for machine
learning. However, Caruana[13] contends that this strategy is sometimes ineffective, since it disregards
a potentially rich source of information accessible in many real-world problems, i.e., the information
contained in the training signals of other tasks drawn from the same domain. If the tasks can share
what they learn, it may be preferable to require the learner to learn many capabilities simultaneously.
In computer vision, a popular method for MTL is to employ a single encoder to learn a shared
representation, followed by numerous task-specific decoders [14, 15]. In this paper, a similar strategy
is employed by training one main backbone model together with several small task-specific heads.

Self-training is an approach for incorporating unlabeled data into a supervised learning task [16, 17,
18]. It is one of the earliest semi-supervised learning approaches, which generates pseudo labels for
unlabeled data using a supervised model. Recently, Ghiasi et al.[15] proposes multi-task self-training
(MuST), an approach for generating generalized visual representations using multi-task learning with
pseudo labels. This method differs from the approach presented in this paper in that the multi-task
learning strategy is employed for both output and various input modalities.
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Figure 1: (Left) The framework of the proposed ViT-DD: First, a face detector is applied to the
input signal from an in-cabin camera to acquire the driver’s facial area. Then, the driver and face
images are divided into patches and independently embedded into visual tokens. Next, the driver and
face embeddings are added with their respective position embeddings, and the resulting sequence is
concatenated. In addition, tokens representing distractions and emotions are prepended. The sequence
of class and visual tokens are then iteratively updated through L Transformer layers. The class tokens
from the final sequence are used to recognize the driver’s distraction and emotion states through their
corresponding MLP heads. (Right) Pseudo-labeled Multi-Task Learning: A well-trained Facial
Expression Recognition Teacher ViT is employed to label the unlabeled drivers’ face images in order
to create a multi-task driver dataset. The dataset containing both ground-truth distraction labels and
pseudo emotion labels is then applied to train a student ViT-DD model with multi-task learning.

2.3 Facial Expression Recognition and Driver Distraction Detection

Facial expression recognition (FER) is an image classification problem that recognizes the emotion
state of individuals [19, 20]. AffectNet-7 [21] is currently the largest publicly available FER dataset,
which comprises images labeled with Ekman’s six fundamental emotions [22], namely happy, sad,
surprise, fear, disgust, and anger, plus an additional neutral category. In this paper, FER is employed
to drivers’ face images to evaluate his or her emotion state, therefore acquiring additional information
to detect driver distractions through multi-task learning.

3 Methodology

In this section, a novel multi-task ViT for semi-supervised driver distraction detection is proposed,
where the overall framework is shown in Figure 1. Specifically, ViT-DD has two input modalities, i.e.
driver and face, to exploit information contained in the training signals of both distraction detection
and emotion recognition. The input images from both modalities are separated into patches, linearly
projected to fixed-dimensional visual tokens, and encoded using a Transformer encoder. Task-specific
classification heads are applied to the output sequence of the Transformer encoder to generate the
prediction results. The training of ViT-DD is conducted through a novel multi-task multi-modal
self-training technique.

3.1 Model Overview

The backbone of ViT-DD is a ViT [10], with different patch projection layers applied to each input
modality (driver and face). Specially, the input space for each modality is defined by X (i), where
i ∈ {0, 1}. The input image x(i) ∈ X (i) ⊆ RC×Hi×Wi from modality i is sliced into patches and
then flattened to v(i) ∈ RNi×(P 2·C), where (P, P ) is the patch size, C is the number of channels of
the input image, and Ni = HiWi/P

2 is the number of patches for each modality. Next, the flattened
patches are linear projected to D dimensional tokens with the projection matrix E(i) ∈ R(P 2·C)×D,
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followed by position embedding Epos ∈ RNi×D. Additionally, class tokens (t(i)class) for each modality
with a learnable embedding are prepended to the beginning of the input sequence. All input tokens
are then concatenated into a combined sequence z0 (Eq.2) and sent to the same Transformer Encoder
as input.

x̄(i) = [t
(i)
1 E(i); · · · ; t(i)Ni

E(i)] + E(i)
pos, i = 0, 1 (1)

z0 = [t
(0)
class; t

(1)
class; x̄

(0), x̄(1)] (2)

z′ℓ = MSA(LN(zℓ−1)) + zℓ−1, ℓ = 1 . . . L (3)

zℓ = MLP(LN(z′ℓ)) + z′ℓ, ℓ = 1 . . . L (4)

y(i) = LN(ziL), i = 0, 1 (5)

The Transformer encoder then learns the fused driver behavior and emotion representation by stacking
L Transformer blocks . A Multilayer Perceptron (MLP) module and a Multihead Self-attention (MSA)
module are included in each block. Additionally, LayerNorm (LN) [23] is also adopted prior to
each module. Self-attention (SA) is the key component of Transformer blocks, in which, the input
vector zℓ−1 is first transformed into three separate vectors: the query vector q, the key vector k,
and the value vector v, all of the same dimension q,k,v ∈ RD. After that, the attention scores are
constructed by the following function:

SA(zℓ−1) = softmax

(
WQq · (WKk)⊤√

DH

)
(WV v) (6)

where WQ,WK ,WV ∈ RDH×D are learnable parameters of three linear projections and DH = D.

MSA is an extension of SA with H self-attention heads, which can be formulated as:

MSA(zℓ−1) = WP [SA1(zℓ−1); · · · ; SAH(zℓ−1)] (7)

where WP ∈ RD×(H·DH), and DH is typically set to D/H . To obtain the final multi-task prediction
probabilities of the driver’s distractions and emotions, the states of the class tokens at the output
of the Transformer encoder (ziL) are fed into the respective classification heads, with the standard
cross-entropy loss adopted. The final loss is the weighed sum of the loss of each head.

For all experiments, a ViT-B [10] pretrained on ImageNet[24] with a patch size of 16× 16 pixels is
employed as the backbone. Specially, the latent vector size D is 768, the patch size P is 16, the layer
depth L is 12, and the number of attention heads H is 12.

3.2 Pseudo-Labeled Multi-Task Training

Pseudo labeling offers the benefit of not requiring a large multi-task dataset with all required labels.
Having access to a well-trained neural network, that can produce pseudo labels of other domains
on the dataset we wish to work on, can be effective. Pseudo labeling is a one-time preprocessing
method applicable to RGB datasets of variable size. Compared to the training cost, this phase is
computationally inexpensive [14].

The proposed multi-task multi-modal self-training algorithm has four steps. First a teacher ViT is
trained on AffectNet-7 [21], a large facial emotion recognition dataset, to enable it to recognize the
facial expressions of drivers. Second, RetinaFace[25], a face detector, is used to detect and crop face
images in the the driver distraction detection datasets. Next, the FER teacher model is used to label
the unlabeled drivers’ face images to create a multi-task pseudo-labeled driver dataset. Finally, the
driver dataset, which now contains both supervised labels for distraction detection and pseudo labels
from the teacher model for emotion recognition, is then employed to train a student ViT-DD model
with multi-task multi-modal learning. To manage the situation in which the driver’s face cannot be
detected, an additional Non-Face label is added to the emotion classification task, and in such case, a
blank image is fed to the face input.

4



Safe Driving

Layer 1 to Layer 6

Layer 7 to Layer 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fear
Layer 1 to Layer 12

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Phone Left

Layer 1 to Layer 6

Layer 7 to Layer 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Happy Layer 1 to Layer 12

Figure 2: Visualization of the attention maps between the distraction token and all visual tokens in
the L = 12 Transformer layers of ViT-DD. Colors visualize the attended regions of the model, where
red and blue represent regions with high and low attention, respectively.

4 Experiments and Results

In this section, the performance of the proposed ViT-DD model in detecting driver distractions is
assessed. The employed benchmarks and baselines are described first. The major results are then
reported along with some empirical analysis.

4.1 Benchmarks

The performance of ViT-DD is evaluated on two publicly available distracted driver detection datasets:
State Farm Distracted Driver Detection (SFDDD) and the American University in Cairo Distracted
Driver Dataset (AUCDD). The SFDDD dataset is comprised of 22,424 labeled images of 26 drivers
captured by a constant-placed 2D dashboard camera with 640× 480 pixels in RGB [4]. The AUCDD
dataset contains 10,555 training images and 1123 testing images with resolution of 1920 × 1080
pixels in RGB. It includes data for 44 drivers, 38 of whom are included in the training set and 6 in the
test set [5, 26]. Both datasets cover the same ten real-world driving postures: (C0) Safe Driving, (C1)
Phone Right, (C2) Phone Left, (C3) Text Right, (C4) Text Left, (C5) Adjusting Radio, (C6) Drinking,
(C7) Hair or Makeup, (C8) Reaching Behind, and (C9) Talking to Passenger.

There are two commonly used train/test split methods for the SFDDD dataset. One option is to
directly split the dataset by images for training or testing, but it will result in a strong correlation
between the training and testing data. In particular, it is possible that consecutive video frames are
divided into training and testing sets, so it simplifies the problem of distraction detection. The other
one is to divide the dataset by drivers such that images of the same driver do not appear in both
training and test data.
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Table 1: Comparison between the proposed ViT-DD with several state-of-the-art methods. The best
method among each setting is highlighted in bold. ↓ indicates lower is better. ↑ indicates higher is
better. ∗ Results from the original papers. Our method achieve the highest average accuracy for all
three experiments, outperforming the state-of-the-art approaches.

Experiment Method Accuracy (↑) NLL (↓)

AUCDD

GA-Weighted Ensemble∗[5] 0.9006 0.6400
ADNet∗[27] 0.9022 −
C-SLSTM∗[28] 0.9270 0.2793
ViT-DD (ours) 0.9359 0.2399

SFDDD
Split-by-Driver

DD-RCNN∗[29] 0.8600 0.3900
ViT-DD (ours) 0.9251 0.3972

SFDDD
Split-by-Image

ViTConv∗ [30] 0.9790 0.0800
Inception+ResNet+HRNN∗ [31] 0.9930 −
LWANet∗ [32] 0.9937 0.0260
ViT-DD (ours) 0.9963 0.0171

In this paper, results of both split approaches for the SFDDD dataset are reported. For the first split
method, 70%/30% of images are used for training and testing, respectively. While for the second,
18/6 of the total 28 drivers are randomly selected for training/testing. The AUCDD dataset adheres to
the original split-by-driver setup.

4.2 Baselines

To compare ViT-DD with the state-of-the-art approaches for distracted driver detection, the following
methods are selected as baselines:(1) GA-Weighted Ensemble[5], (2) ADNet[27], (3) C-SLSTM[28],
(4) DD-RCNN[29], (5) ViTConv[30], (6) Inception+ResNet+HRNN[31], and (7) LWANet[32]. Note
that LWANet is not compared on the AUCDD dataset, as it does not adhere to the split-by-driver
setting.

4.3 Implementation Details

For all experiments, AdamW [33] is adopted as the optimizer with weight decay of 0.1. The base
learning rates for SFDDD and AUCDD datasets are set to 0.0003 and 0.0006, respectively. The
learning rate is warmed up for 5 epochs, starting with a learning rate of 10−6 and decaying to 0 using
the cosine scheduler[34]. The input resolution is 224× 224 for the driver’s images and 32× 32 for
face images. With a patch size of 16× 16, the total number of patches is 200. Simple Random Crop
introduced by Touvron et al.[35] with random horizontal flip is employed as the data augmentation
strategy. For the SFDDD dataset, 3-Augment introduced in [35] is also applied. Since datasets in
this paper are not very large, only the multi-head self-attention layers in the Transformer encoder
are fine-tuned, as suggested by Touvron et al.[36]. The ViT-DD model is trained for 20 epochs on 1
NVIDIA A100 GPU with a batch size of 256. Our model is implemented in PyTorch[37].

4.4 Comparison with State-of-the-Art

The performance comparisons between the proposed ViT-DD and the state-of-the-art approaches are
shown in Table 1. From the results, we have the following observations:

(1) Splitting-by-image produces a significant correlation between training and testing data. In
comparison to other state-of-the-art results on SFDDD with this setting, such as LWANet[32], ViT-
DD achieves an accuracy improvement of 0.26%. This demonstrates the excellent fitting capability
of ViT-DD.

(2) When adopting a more challenging and realistic split strategy, namely, separate by driver, ViT-DD
can respectively obtain 6.5% and 0.9% performance gains over the reported state-of-the-art results,
i.e., DD-RCNN[29] on SFDDD and C-SLSTM[28] on AUCDD. This result shows the superior
generalization ability of ViT-DD. The performance improvements benefit from the advantages of
ViT-DD. First the state-of-the-art ViT is employed as the backbone network, which can provide
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(a) Standard ViT (b) ViT-DD

Figure 3: Confusion matrices of the standard ViT and ViT-DD on AUCDD

high generalization performance if pretrained on a large-scale dataset[38]. Second, the novel multi-
task multi-modal self-training method enables ViT-DD to leverage additional inductive information
provided by the training signals for recognizing the emotion state of drivers, thereby improving
generalization performance.

4.5 Ablation Study

The proposed ViT-DD is trained utilizing a novel multi-task multi-modal self-training procedure. To
further validate the effectiveness of this strategy, an ablation study is conducted in comparison to the
standard ViT trained with supervised driver distraction detection labels. The average accuracy and
NLL on SFDDD split-by-driver and AUCDD datasets are shown in Table 2. The confusion matrices
on the AUCDD dataset is shown in Figure 3.

Table 2: Performance comparison between the standard ViT and the proposed ViT-DD.

Dataset Method Accuracy (↑) NLL (↓)

SFDDD Standard ViT[10] 0.9036 0.5355
ViT-DD 0.9251 0.3972

AUCDD Standard ViT[10] 0.9092 0.2895
ViT-DD 0.9359 0.2399

From Table 2, it is clear that for both datasets, ViT-DD performs better. The average accuracy
improvements of ViT-DD over the standard ViT are 2.2% and 2.7% on the SFDDD and AUCDD
datasets, respectively. This demonstrates that ViT-DD successfully leverages additional sources of
information from the emotion recognition to improve the performance of learning on the task of
distraction detection. From the confusion matrices, we have the following observations:

(1) ViT-DD performs significantly better in detecting safe driving (C0) and talking to passenger
(C9) with 13% and 9% increases in accuracy, respectively. This is because certain emotion states
correlate strongly with these two driving behaviors. Specifically, in most cases, drivers have a neutral
emotion when driving safely and tend to be happy when talking to passengers. Standard ViT tends
to misclassify safe driving as phone right (C1). This can be resolved with the support of drivers’
emotion information, as talking on the phone corresponds to all kinds of emotion status, not just
neutral. Also, in standard ViT, 13% of talking to passenger scenarios are misclassified as hair or
makeup (C7), compared to 0% in ViT-DD due to the inclusion of emotion information.

(2) However, ViT-DD suffers a performance loss when detecting phone left (C2) and reaching behind
(C8). Specifically, phone left is occasionally interpreted as hair or makeup (C7), and reaching behind
is occasionally interpreted as drinking (C6). In both of these cases, emotion information may mislead
the detection of driver distractions: The driver’s emotion state can vary when phoning, so emotion
cannot provide useful information for detecting this behavior; For reaching behind, it is difficult to
identify the driver’s emotion, so the emotion data may not be accurate.
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Talking to Passenger

Surprise

Layer 1 Layer 3 Layer 5

Layer 7 Layer 9 Layer 12

Figure 4: The attention interactions between the distraction token and the emotion token in the 1st,
3rd, 5th, 7th, 9th and 12th Transformer encoder layers of ViT-DD.

(3) It is worth noting that ViT-DD has a much higher detection accuracy on phone right (C1) than
phone left (C2), which is due to the bias present in the dataset. The dash-board camera is positioned
in front of the passenger’s seat and photographs the driver from the right-hand side. As a result,
detection of the phone on the right is much simpler than on the left, since the phone on the right is
completely visible.

4.6 Visualization

In order to show the interpretability of our model, the attention maps during inference on the AUCDD
dataset are visualized in Figure 2 and Figure 4. Figure 2 shows the interactions between the distraction
token and visual tokens of various Transformer encoder layers. The attention scores are used to
generate the attention maps. For visualization purposes, the 1D sequence of attention scores is
reshaped according to their original spatial positions in the driver or face images.

As seen in Figure 2, as the network becomes deeper, the distraction token gathers more precise local
cues rather of the whole driver or face image signals. In the first few layers, the whole in-cabin scene
provides interference cues, but a well-trained ViT-DD can gradually concentrate on critical areas of
input images. For instance, in the first safe driving scenario, the model successfully focuses on the
driving wheel region of the driver’s image, which is the most informative area of the whole picture.
For the second phone left scenario, the model effectively pays most attention to the phone region. For
both face images, the model attends to the eye region, which is the most distinguishable part of the
face for recognizing facial expressions of drivers.

Figure 4 illustrates the attention maps between the distraction token and the emotion token in several
self-attention layers. During the initial stages, class tokens show little interaction with one another.
As the layer depth increases, both class tokens tend to rely on each other to acquire clues for the final
prediction.

5 Conclusion and Future Work

In this paper, a pure Transformer architecture-based method for detecting driver distractions is
proposed. The developed ViT-DD trained with the novel pseudo-labeled multi-task learning algorithm
can leverage information from emotion recognition to improve the performance of learning on
distraction detection. Extensive experiments conducted on SFDDD and AUCDD benchmarks with
the challenging split-by-driver setting demonstrate that ViT-DD achieves 6.5% and 0.9% performance
improvements as compared to the best state-of-the-art driver distraction detection approaches. As the
next step, additional training signals available from in-cabin camera, such as gaze tracking and head
pose tracking, can be incorporated into distraction detection or other driver behavior prediction tasks.
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